التخطي إلى المحتوى

أهمية الكهرباء لجميع جوانب الحياة ان الكهرباء من اهم الاشياء في الحياه حاليا ولا يستطيع الانسان العيش بدون الكهرباء فهي اصبحت مثل الاكل والماء في الحياه فاذا انقطعت الكهرباء انقطع اشياء كثيره يعتمد الانسان عليها في الاكل والشرب والحياه نفسها وقد اصبح الانسان يعتمد في التكنولوجيا وهي ما لا يستطيع ان يستغني عنها ابدا وهي من اهم عناصر الحياه في العصر الجديد خصوصا من بدايه القرن ال21 وهي وسيله التواصل بين العالم ولذلك نقدم لكم اليوم مقال عن اهميه الكهرباء.

نبذة تاريخية

أصبحت محطات الطاقة المركزية عملية اقتصادياً مع تطور طرق النقل الكهربي للتيار المتردد، وذلك باستخدام المحولات الكهربية لنقل الكهرباء عند جهد عالي مع فقدان بسيط للطاقة. وتقوم محطات الطاقة المركزية بتوليد الكهرباء منذ عام 1881. وكانت أول محطة لتوليد الطاقة الكهربائية تعتمد على الطاقة المائيةأو على الفحم،العالم اليوم يعتمد بشكل رئيسي على الفحم والطاقة النووية والغاز الطبيعي والطاقة الكهرومائية، وتوربينات الرياح، والبترول، مع كمية صغيرة من الطاقة يتم توليدها من الطاقة الشمسية وطاقة المد والجزر ، ومصادر الطاقة الحرارية الأرضية.

وقد اعتمدت عملية توزيع الكهرباء بشكل ملحوظ على استخدام خطوط وأعمدة الكهرباء.

تاريخ

قبل معرفة الكهرباء بفترة طويلة، كان الناس على دراية بالصدمات التي يحدثها سمك الرعاش، وقد أشارت النصوص التي تركها قدماء المصريين، والتي يرجع تاريخها إلى سنة 2750 قبل الميلاد، إلى هذه الأسماك باسم “صاعقة النيل”، كما وصفوها بأنها حامية جميع الأسماك الأخرى. وبعد حوالي ألف عام، أشار إليها أيضًا الإغريق والرومان وعلماء الطبيعة والأطباء المسلمون ولقد أكد الكتّاب القدامى، مثل بليني الأكبر وسكريبونيس لارجوس على الإحساس بالتنميل الناتج عن الصدمات الكهربائية التي يحدثها سمك السلّور الصاعق وأنقليس الرعاد الكهربائي. كما اكتشف هؤلاء الكتّاب أن هذه الصدمات يمكن أن تنتقل عبر الأجسام الموصلة وبجميع الأحوال، ينسب أقدم وأقرب أسلوب لاكتشاف ماهية البرق والكهرباء الصادرة عن أي مصدر آخر إلى العرب الذين أطلقوا كلمة “برق” العربية على الشعاع الكهربائي قبل القرن الخامس عشر. وقد كان معروفًا في الثقافات القديمة للدول المطلة على البحر الأبيض المتوسط أن هناك أجسامًا معينة مثل قضبان الكهرمان، يمكن حَكِّها بفرو قطة فتجذب الأجسام الخفيفة مثل الريش. وقد قام العالم والفيلسوف الإغريقي، طاليس الملطي، حوالي عام 600 قبل الميلاد بتسجيل مجموعة من الملاحظات تتعلق بالكهرباء الساكنة. وبعد هذه الملاحظات، توصل إلى أن الاحتكاك يحول الكهرمان إلى مادة مغناطيسية. وعلى عكس ذلك، لا تحتاج المعادن، مثل الماغنتيت المعروف باسم أكسيد الحديد الأسود، إلى عملية الاحتكاك حتى تكتسب صفة المغناطيسية إلا أن طاليس كان مخطئًا في اعتقاده بأن سبب الانجذاب هو التأثير المغناطيسي، فقد أثبتت الأبحاث العلمية فيما بعد وجود علاقة بين المغناطيسية والكهرباء. ووفقًا لإحدى النظريات المثيرة للجدل، فقد عرف البارثيون، إحدى شعوب بلاد فارس، الطلاء الكهربائي وفقًا لما أفادت المعلومات التي تحصلت من اكتشاف بطارية بغداد عام 1936. وعلى الرغم من أن هذه البطارية تشبه الخلية الجلفانية، فإنه من غير المؤكد ما إذا كانت ذات طبيعة كهربية أم لا.
بنيامين فرانكلين، أبرز العلماء والباحثين في مجال الكهرباء، حيث أجرى أبحاثًا شاملة حول هذا الموضوع في القرن الثامن عشر.

ظلت الكهرباء لا تعني أكثر من مجرد فضول فكري لآلاف السنين حتى عام 1600. ففي ذلك العام، أجرى الطبيب الإنجليزي ويليام جيلبرت دراسة دقيقة حول الكهرباء والمغناطيسية، وفرّق فيها بين تأثير حجر المغناطيس والكهرباء الساكنة التي تنتج عن احتكاك مادة الكهرمان وابتكر كلمة “electricus” وهي باللغة اللاتينية الجديدة (“من الكهرمان” أو “شبيه الكهرمان”، ومأخوذة من “قëهêôٌïي” أي “إلكترون”، وهي المرادف اليوناني لكلمة “كهرمان”) للإشارة إلى خاصية جذب الأجسام الصغيرة بعد حكها. أدى هذا الارتباط إلى إبراز الكلمتين “Electric” و”Electricity” اللتين ظهرتا لأول مرة في كتاب توماس براون “الأخطاء الشائعة” (باللاتينية: Pseudodoxia Epidemica)الذي صدر عام 1646مايكل فاراداي، واضع أسس تقنية المحرك الكهربائي.

وقد قدم أوتو فون جيريك وروبرت بويل وستيفن جراي وسي إف ديو فاي المزيد من الأعمال. وأجرى بنيامين فرانكلين في القرن الثامن عشر أبحاثًا شاملة بشأن الكهرباء، حتى أنه اضطر إلى بيع ممتلكاته لتمويل أبحاثه. وقيل أنه في شهر حزيران/يونيو من سنة 1752، قام بربط مفتاح معدني أسفل خيط طائرة ورقية رطب وأطلق الطائرة في سماء تنذر بهبوب عاصفة. ثم لاحظ مجموعة متلاحقة من الشرارات تخرج من المفتاح إلى ظهر يده، الأمر الذي برهن على أن البرق ذو طبيعة كهربائية بالفعل. نشر لودجي جالفاني عام 1791 اكتشافه الخاص بالكهرباء الحيوية الذي أظهر أن الكهرباء هي الوسيط الذي تقوم من خلاله الخلايا العصبية بنقل الإشارات إلى العضلات.

ربما تشاهد أيضأ:
تقرير عن دار الأيتام - موضوع تعبير عن دار الايتام

وفي عام 1800، اخترع أليساندرو فولتا أول بطارية كهربائية وأطلق عليها اسم “البطارية الفولتية”. وكانت مصنوعة من طبقات متوالية من الزنك والنحاس. ولقد مَدّت هذه البطارية العلماء بمصدر للطاقة الكهربائية يمكن الاعتماد عليه أكثر من الماكينات الإلكتروستاتيةالتي كانت تُستخدم من قبل. ويرجع الفضل في التعرّف على الكهرومغناطيسية، أي وحدة الظواهر الكهربية والمغناطيسية، إلى هانز كريستيان أورستد وأندريه-ماري أمبير في الفترة الممتدة بين عامي 1819 و1820، ثم اخترع مايكل فاراداي المحرك الكهربائي عام 1821. كما قام جورج أوم بتحليل الدائرة الكهربائية حسابيًا عام 1827

وعلى الرغم من أن أوائل القرن التاسع عشر شهدت تقدمًا سريعًا في علم الكهرباء، فإن أواخر القرن نفسه شهدت أعظم تقدم في مجال الهندسة الكهربائية. وتحولت الكهرباء من مجرد فضول علمي مُحير إلى أداة رئيسية لا غنى عنها في الحياة العصرية وأصبحت القوة الدافعة للثورة الصناعية الثانية. وكل ذلك تحقق بفضل بعض الأشخاص مثل نيقولا تسلا وتوماس إديسون وأوتو بلاثي وجورج ويستنغهاوس وإرنست ويرنر فون سيمنز وألكسندر غراهام بيل واللورد ويليام تومسون، بارون كلفن الأول.

التيار الكهربائي

تُعرف حركة الشحنة الكهربائية باسم التيار الكهربائي الذي تقاس شدته عادةً بوحدة الأمبير. ويتكون التيار الكهربائي من أية جسيمات مشحونة ومتحركة.
وتعد الإلكترونات الأكثر شيوعًا بين هذه الجسيمات، ولكن أي شحنة متحركة يمكنها أن تكون تيارًا.
ووفقًا لما هو متعارف عليه، فإن التيار الموجب يُعَرّف بأنه التيار المتدفق في الاتجاه نفسه الذي تتدفق فيه أية شحنة موجبة يحملها؛ أو أنه التيار المتدفق من أقصى طرف موجب في الدائرة الكهربائية إلى أقصى طرف سالب. ويُطلق على هذا النوع من التيارات اسم التيار الاصطلاحي.
وبالتالي، تعد حركة الإلكترونات السالبة حول الدائرة الكهربائية ـ وهي أحد أشهر أشكال التيار الكهربائي ـ موجبة في الاتجاه المقابل لاتجاه الإلكترونات ومع ذلك، فإنه وفقًا للظروف المحيطة يمكن أن يتكون التيار الكهربائي من تدفق الجسيمات المشحونة (الجسيم المشحون) في أيٍّ من الاتجاهين أو حتى في كلا الاتجاهين في وقت واحد.
ويشيع استخدام المصطلحين السالب والموجب لتبسيط هذه الحالة.
يقدم القوس الكهربائي دليلاً فعالاً على التيار الكهربائي.

علاوةً على ذلك، يُطلق على العملية التي يمر فيها التيار الكهربائي خلال أحد المواد “التوصيل الكهربائي”. وتختلف طبيعة التوصيل الكهربائي عن طبيعة الجسيمات المشحونة والمادة التي يمر من خلالها.
ومن أمثلة التيارات الكهربائية: التوصيل الفلزي الذي تتدفق فيه الإلكترونات خلال موصل مثل الفلز.
بالإضافة إلى ذلك، هناك التحليل الكهربائي الذي تتدفق فيه الأيونات (وهي عبارة عن ذرات مشحونة) خلال السوائل.
في حين تتحرك الجسيمات نفسها ببطء تام، ليصل متوسط سرعة الانسياق أحيانًا إلى أجزاء من المليمتر في الثانية، فإن المجال الكهربائي الذي تتدفق فيه هذه الجسيمات ينتشر في حد ذاته بسرعة مقاربة لسرعة الضوء، مما يسمح للإشارات الكهربائية بالمرور بسرعة خلال الأسلاك.
يؤدي التيار الكهربائي إلى حدوث عدة تأثيرات ملحوظة ـ كانت تعتبر في الماضي الوسيلة التي يدرك بها الأفراد وجود تيار كهربائي.
وقد اكتشف ويليام نيكلسون وأنطوني كارلايل عام 1800 أن بإمكان التيار الكهربائي تحليل الماء من بطارية فولتية، وتُعرف هذه العملية الآن باسم التحليل الكهربائي. وقام مايكل فاراداي بعمل دراسات موسعة في اكتشاف نيكلسون وكارلايل بشكل كبير عام 1833.
ويسبب التيار المار من خلال مقاومة نوعًا من التدفئة في المكان المحيط، وهو تأثير كان جيمس بريسكوت قد بحثه حسابيًا عام 1840.
ومن أهم الاكتشافات الخاصة بالتيار الكهربائي كان ما توصل إليه هانز كريستيان أورستد بمحض الصدفة عام 1820 عندما كان يحضر إحدى محاضراته. حيث وجد أن التيار الكهربائي في أحد الأسلاك يشوش حركة إبرة البوصلة المغناطيسية، كما اكتشف الكهرومغناطيسية، وهي عبارة عن تفاعل أساسي يحدث بين الكهرباء والمغناطيسات.

يوصف التيار الكهربائي عادةً، في التطبيقات الهندسية وفي المنازل، بأنه إما تيار مستمر أو تيار متردد
. ويشير هذان المصطلحان إلى الكيفية التي يتغير بها التيار الكهربائي من حيث الزمن.
فالتيار المستمر، الذي يتم إنتاجه من البطارية على سبيل المثال واللازم لتشغيل معظم الأجهزة الإلكترونية يتدفق في اتجاه واحد من الطرف الموجب للدائرة الكهربائية إلى الطرف السالب منها.
وفي حالة قيام الإلكترونات بنقل أو حمل هذا التيار المتدفق، وهو الأمر الأكثر شيوعًا، فإنها ستمر في الاتجاه المعاكس. أما التيار المتردد فهو أي تيار ينعكس اتجاهه بشكل متكرر. وغالبًا ما يأخذ هذا التيار شكل موجة جيبية.
وبالتالي، يتذبذب التيار المتردد ذهابًا وإيابًا داخل الموصل دون أن تتحرك الشحنة الكهربائية لأي مسافة على مدار الوقت. وتبلغ قيمة متوسط الفترة الزمنية التي يستغرقها التيار المتردد صفرًا.
إلا أنه يقوم بتوصيل الطاقة في اتجاه واحد وهو الأول ثم يعكس. ويتأثر التيار المتردد بالخصائص الكهربائية التي يصعب ملاحظتها في حالة الاستقرار التي يتمتع بها التيار المستمر. ومن أمثلة هذه الخصائص: المحاثة والسعة
ومع ذلك، تزيد أهمية هذه الخصائص عندما تتعرض مجموعة من الدوائر الكهربائية لتراوح مؤقت في التيار، مثلما يحدث عند تزويدها بالطاقة لأول مرة.

ربما تشاهد أيضأ:
اسباب انتشار ظاهره تشغيل الاطفال

طرق توليد الطاقة الكهربائية

هناك سبع طرق أساسية للتحويل المباشر لأشكال مختلفة من الطاقة إلى طاقة كهربائية:

الكهرباء الساكنة، بواسطة الفصل المادي للشحنات الكهربائية ونقلها (أمثلة: تأثير كهرباء الاحتكاك والبرق)
الحث الكهرومغناطيسي، الذي بواسطته يحول المولد الكهربائي، أو الدينامو، أو مولد التيار المتردد (المتناوب) الطاقة الحركية (طاقة الحركة) إلى كهرباء. هذا هو الشكل الأكثر استخداماً لتوليد الكهرباء، ويستند إلى قانون فاراداي. ويمكن تجربته ببساطة بواسطة اِستِدارة مغناطيس في قلب دائرة مغلقة من مادة موصلة (مثل الأسلاك النحاسية).
الكيمياء الكهربائية، وهو التحويل المباشر للطاقة الكيميائية إلى طاقة كهربائية، كما هو الحال في البطارية، وخلايا الوقود أو النبض العصبي
التأثير الكهروضوئي، وهو تحويل الضوء إلى طاقة كهربائية، كما هو الحال في الخلايا الشمسية.
التأثير الكهروحراري، وهو التحويل المباشر للاختلافات في درجة الحرارة إلى كهرباء، كما هو الحال في المزدوجات الحرارية، الركائز الحرارية (الترموبيلات)، والمحولات الثرميونية.
تأثير الكهرضغطية، بواسطة الاجهاد الميكانيكي للجزيئات اللا متجانسة كهربياً في شتي الاتجاهات أو البلورات. وقد طور الباحثون في مختبر لورانس بيركلي الوطني (مختبر بيركلي) التابع للوزارة الأمريكية للطاقة مولد كهرضغطي كافي لتشغيل عرض بلوري سائل باستخدام أغشية رقيقة من عاثية (بكتريوفاج) M13.[7]
التحويل النووي، وهو الإحداث والتسريع لجسيمات مشحونة (أمثلة: المولدات البيتافلطائية أو الانبعاث الألفا جسيمي)

كانت الكهرباء الساكنة هي أول شكل للطاقة يتم اكتشافه والتحقيق فيه، ومازال المولد الكهروستاتيكي يستخدم حتى مع الأجهزة الحديثة مثل مولد فان دي غراف ومولدات إم إتش دى (مولدات للطاقه باستخدام الهيدروديناميكية المغنطيسية). في تلك العملية يتم عزل حاملات الشحنة ونقلها فعلياً إلى موضع يكون فيه زيادة في الجهد الكهربائي.

تقريباً كل الطاقة الكهربائية المولدة على نطاق التجاري تستخدم الحث الكهرومغناطيسي، الذي تقوم فيه الطاقة الميكانيكية بدفع مولد كهربائي للدوران. هناك العديد من الطرق المختلفة لاكتساب تلك الطاقة الميكانيكية، منها المحركات الحرارية، والطاقة المائية وطاقة الرياح وطاقة المد والجزر.

يتم استخدم التحويل المباشر لطاقة الوضع النووية إلى كهرباء بواسطة النشاط الإشعاعي لتحلل بيتا على نطاق ضيق فقط. ففي محطات الطاقة النووية الضخمة، يتم استخدام الحرارة الناتجة من التفاعل النووي لتشغيل محرك حراري. وهذا المحرك يقوم بدفع مولد كهربائي للدوران، والذي بدوره يحول الطاقة الميكانيكية إلى طاقة كهربائية بواسطة الحث المغناطيسي.

أغلب التوليد الكهربي يكون مدفوع بواسطة محركات حرارية. وتزود معظم تلك المحركات بالحرارة اللازمة للتشغيل من خلال عمليات الاحتراق للوقود الأحفوري، مع جزء آخر معتبر منها يزود بالحرارة من خلال الانشطار النووي وبعض مصادر الطاقة المتجددة. التوربينات البخارية الحديثة (التي اخترعها السير تشارلز بارسونز في عام 1884) تولد حالياً نحو 80٪ من الطاقة الكهربائية في العالم باستخدام مجموعة متنوعة من المصادر الحرارية.

توليد الكهرباء

إن التجارب التي أجراها طاليس باستخدام قضبان الكهرمان كانت أولى الدراسات التي أجريت على عملية إنتاج الطاقة الكهربائية
. وعلى الرغم من أن هذه الطريقة، المعروفة الآن باسم تأثير كهرباء الاحتكاك، قادرة على رفع الأجسام الخفيفة وكذلك توليد الشرارات، فإنها غير فعالة على الإطلاق.
ولم يتم التوصل لمصدر كهربائي فعال إلا بعد اختراع البطارية الفولتية في القرن الثامن عشر.
وهذه البطارية وكذلك الطراز الأحدث منها ألا وهو البطارية الكهربائية، تخزن الطاقة بشكل كيميائي وتجعلها متاحة للاستخدام في شكل طاقة كهربائية.
وتتميز البطارية بتعدد استخداماتها وتعد مصدرًا شائعًا وقويًا للطاقة ويصلح استخدامها في العديد من التطبيقات.
إلا أن قدرتها على تخزين الطاقة محدودة، وبمجرد تفريغ الطاقة المخزنة، يجب التخلص من البطارية أو إعادة شحنها.
وبالنسبة للاحتياجات الضخمة من الطاقة الكهربائية، فينبغي توليدها وتحويلها بكميات كبيرة.
عادةً ما تولد الطاقة الكهربائية عن طريق المولدات الحركيّة الكهربائية التي يديرها البخار المنتج من احتراق الوقود الحفري أو الحرارة الناتجة عن التفاعلات النووية.
كما تولد الطاقة من مصادر أخرى مثل الطاقة الحركية المستخلصة من الرياح أو الماء المتدفق.
ولا تتشابه هذه المولدات مع المولد الذي اخترعه فاراداي عام 1831 وهو عبارة عن مولد أحادي القطب.
ولكن لا يزال الاعتماد قائمًا على مبدئه الكهرومغناطيسي القائل إن الموصل الذي يتصل بمجال مغناطيسي متغير يحث فرق جهد عبر طرفيه.
إن اختراع المحول في أواخر القرن التاسع عشر جعل بالإمكان توليد الكهرباء من محطات توليد مركزية عن طريق الاستفادة من وفورات الحجم، ونقل هذه الكهرباء عبر الدول بكفاءة متزايدة

ربما تشاهد أيضأ:
مظاهر النمو الوجدانى عند المراهق

وبما أنه من الصعب تخزين الطاقة الكهربائية بكميات كبيرة تكفي لتلبية الاحتياجات على المستوى القومي، ينبغي أن يكون الإنتاج بقدر الاحتياج في جميع الأوقات.
وهذا الأمر يتطلب أن تتحرى المرافق الكهربائية الدقة في توقعاتها بشأن احتياجاتها الكهربائية وتحافظ على التنسيق المستمر مع محطات توليد الكهرباء.
وهناك مقدار معين من عملية التوليد يجب أن يكون احتياطيًا حتى يقلل صدمات الشبكة الكهربائية التي تحدث بسبب الاضطرابات والفواقد التي يتعذر اجتنابها.
وفي واقع الأمر، فإن الطلب على الطاقة الكهربائية يتزايد بسرعة كبيرة كلما زاد تقدم الدولة ونما اقتصادها.
وقد كشفت الولايات المتحدة عن تزايد الطلب على الكهرباء بنسبة 12% كل عام على مدار الثلاثة عقود الأولى من القرن العشرين وهو معدل نمو تشعر به الآن الاقتصادات الناشئة، مثل الهند أو الصين ومن الناحية التاريخية، زاد معدل نمو الطلب على الطاقة الكهربائية عن صور الطاقة الأخرى.
لقد أدت بعض المخاوف البيئية المتعلقة بتوليد الكهرباء إلى التركيز بشكل متزايد على التوليد من مصادر متجددة، وخاصةً الطاقة المائية وطاقة الرياح.
وعلى الرغم من استمرار الجدل حول التأثير البيئي للوسائل المختلفة لإنتاج الطاقة، فإن الصورة النهائية لها نظيفة نسبيًا

اقتصاديات توليد وإنتاج الكهرباء

اختيار وسائط إنتاج الكهرباء وجدواها الاقتصادية يختلف وفقاً لحجم الطلب على الكهرباء والمنطقة التي يراد ايصال الكهرباء لها. محطات الطاقة الكهرومائية ومحطات الطاقة النووية، ومحطات الطاقة الحرارية ومصادر الطاقة المتجددة لها ايجابيات وسلبيات، والاختيار فيما بينها يعتمد على متطلبات الطاقة المحلية والتقلبات في حجم الطلب على الكهرباء.

الطاقة الحرارية تكون اقتصادية في المناطق ذات الكثافة الصناعية العالية، حيث أن الطلب العالى على الكهرباء في تلك المناطق لا يمكن تحقيقه بواسطة مصادر الطاقة المتجددة. وتأثير التلوث يقل أيضاً في تلك المناطق حيث أن الصناعات عادة ما تقع بعيداً عن المناطق السكنية. ويمكن لتلك المحطات أيضاً تحمل الاختلاف في الحمل والاستهلاك عن طريق إضافة المزيد من الوحدات أو انقاص إنتاج بعض الوحدات مؤقتاً.

محطات الطاقة النووية يمكن أن تنتج كمية كبيرة من الطاقة من وحدة واحدة.

ومع ذلك، فقد أثار الكوارث الأخيرة في اليابان مخاوف بشأن سلامة الطاقة النووية.

وتنتشر محطات توليد الطاقة الكهرومائية في المناطق التي تكون فيها الطاقة الكامنة من المياه المتدفقة قابلة لتسخيرها لتحريك التوربينات وتوليد الطاقة. وهي ليست مصدراً اقتصادياً لإنتاج الكهرباء حيثما يختلف الحمل الكهربى أكثر من اللازم خلال دورة الإنتاج السنوية لأن القدرة على وقف تدفق المياه محدودة.

مصادر الطاقة المتجددة الأخرى غير الطاقة الكهرمائية (الطاقة الشمسية، وطاقة الرياح، وطاقة المد والجزر، وغيرها) مكلفة في الإنتاج حالياً، ولكن تكلفة إنتاجها تنخفض مع التقدم في التكنولوجيا. العديد من الحكومات في جميع أنحاء العالم تقدم إعانات لتعويض ارتفاع تكلفة انتاج الكهرباء من الطاقة المتجددة وجعل إنتاجها مجدي اقتصادياً.

إذا كانت أسعار الغاز الطبيعي أقل من 3 دولارات لكل مليون وحدة حرارية بريطانية، فان توليد الكهرباء من الغاز الطبيعي يكون أرخص من توليد الطاقة عن طريق حرق الفحم

الاستخدامات

إن الكهرباء صورة مرنة جدًا من صور الطاقة، فهي تلائم عددًا كبيرًا ومتزايدًا من الاستخدامات.
وقد كان لاختراع مصباح الإضاءة المتوهج على يد توماس أديسون في السبعينات من القرن التاسع عشر الفضل في أن تصبح الإضاءة واحدةً من أولى التطبيقات المتوفرة من الطاقة الكهربائية.
على الرغم من مخاطر الكهرباء، فإن الاستعاضة بها عن اللهب المكشوف للإضاءة المعتمدة على الغاز قللت كثيرًا من مخاطر الحريق داخل البيوت والمصانع.
وقد تم إنشاء مرافق عامة في العديد من المدن لتستهدف سوق الإضاءة الكهربائية الآخذ في الازدهار.
علاوةً على ذلك، كان لتأثير التسخين بحرارة جول المستخدم في مصباح الإضاءة أثرًا مباشرًا في مجال التدفئة الكهربائية.
ومع أن هذا التأثير متعدد الاستعمالات ويمكن التحكم فيه، يرى البعض أنه مضيعة للوقت؛ حيث إن معظم عمليات التوليد الكهربائي يلزمها بالفعل إنتاج الحرارة في إحدى محطات توليد الكهرباء.
ولقد سنت عدة دول، مثل الدنمارك، قانونًا يحد أو يمنع من استخدام التدفئة الكهربائية في المباني الجديدة.
ومع ذلك، تعد الكهرباء، إلى حد كبير، مصدرًا عمليًا للطاقة يمكن استخدامه في عمليات التبريد،
حيث إن تكييف الهواء يمثل أحد القطاعات التي تزيد احتياجاتها للطاقة ـ وهي متطلبات تضطر دائمًا مرافق الكهرباء إلى تلبيتها.
تستخدم الكهرباء في الاتصال عن بُعد. وفي الواقع، كان التلغراف الكهربائي، الذي ابتكره ويليام كوك وتشارلز ويتستون عام 1837، من أوائل تطبيقات الكهرباء في هذا المجال.
ومع وضع أول نظام تلغراف عابر للقارات، ثم عبر المحيط الأطلسي، في الستينات من القرن التاسع عشر، سهلت الكهرباء وسائل الاتصال فأصبحت لا تستغرق سوى دقائق معدودة في جميع أنحاء العالم.
وعلى الرغم من أن تكنولوجيا الألياف البصرية والاتصال عبر الأقمار الصناعية قد شغلت حصة في سوق نظم الاتصالات، ولكن ما زالت الكهرباء جزءًا أساسيًا من هذه العملية. فضلاً عن ذلك، تظهر تأثيرات الكهرومغناطيسية بوضوح في المحرك الكهربائي الذي يعد وسيلة نظيفة وفعالة للقدرة المحركة.
ويسهل تزويد المحرك الثابت، مثل الرافعة، بمصدر للإمداد بالقدرة.
أما المحرك الذي يتحرك مع تطبيقه، مثل السيارة الكهربائية، فيجب أن يحمل معه مصدرًا للقدرة كالبطارية، أو يجمع شحنة كهربائية مستمدة من تماس انزلاقي مثل البانتوجراف، مما يضع قيودًا على مداه أو أدائه.
هذا وتستخدم الأجهزة الإلكترونية المقحل، الذي يعد من أهم الاختراعات في القرن العشرين.
كما أنه وحدة بناء أساسية تدخل في تكوين جميع الدوائر الكهربائية الحديثة. وقد تحتوي الدائرة المتكاملة الحديثة على مليارات من أجهزة المقحل صغيرة الحجم في محيط لا يتجاوز بعض السنتيمترات المربعة.

ربما تشاهد أيضأ:
مثال على العصف الذهني

الإنتاج العالمي

وصل إنتاج الكهرباء العالمى إلى 20,053 تيراواط ساعة في عام 2009. وكانت مصادر الكهرباء تتوزع بين الوقود الأحفوري 67٪، والطاقة المتجددة 16٪ (الطاقة الكهرومائية أساساً، والرياح، والطاقة الشمسية والكتلة الحيوية)، والطاقة النووية 13٪، و 3٪ لغيرها من المصادر. وكانت غالبية عمليات توليد الطاقة من الوقود الأحفوري تستخدم الفحم والغاز لتوليد الكهرباء. وكان استخدام النفط يشكل 5.5٪ فقط من إجمالي إنتاج الكهرباء العالمى، حيث أنه من أغلى السلع المعتادة التي تستخدم لإنتاج الطاقة الكهربائية. ووصل إنتاج الكهرباء من الطاقة الكهرومائية اثنان وتسعون في المئة (92٪) من اجمالى إنتاج الكهرباء من الطاقة المتجددة تليها الرياح بنسبة 6٪ والطاقة الحرارية الأرضية عند 1.8٪. وشكل إنتاج الكهرباء من الطاقة الضوئية الشمسية نسبة 0.06٪، و من الطاقة الشمسية الحرارية نسبة 0.004٪. هذة البيانات مصدرها هو كتاب حقائق منظمة التعاون والتنمية 12-2011 (بيانات 2009)
مصادر الكهرباء (المجموع العالمي سنة 2008) – فحم نفط غاز
طبيعي نووي مائية أخرى المجموع
متوسط الطاقة الكهربائية (تيراواط ساعة / السنة) 8,263 1,111 4,301 2,731 3,288 568 20,261
متوسط الطاقة الكهربائية (جيجاواط) 942.6 126.7 490.7 311.6 375.1 64.8 2311.4
نسبة 41% 5% 21% 13% 16% 3% 100%

مصدر البيانات هو وكالة الطاقة الدولية/منظمة التعاون والتنمية

تدفق الطاقة من محطة توليد الكهرباء

وكان إجمالي الطاقة المستهلكة في جميع محطات الطاقة لتوليد الكهرباء هو 4,398,768 كيلوطن نفط مكافئ (ألف طن من النفط المكافئ) والذي بلغ 36٪ من إجمالي إمدادات الطاقة الأولية لسنة 2008. وكان انتاج الكهرباء (إجمالي) هو 1,735,579 كيلوطن نفط مكافئ (20,185 تيراواط ساعة)، بكفاءة تبلغ 39٪، والرصيد الباقى 61٪ كان عبارة عن حرارة متولدة. واستخدم جزء صغير من الحرارة (145,141 كيلوطن نفط مكافئ، والذي يشكل 3٪ من إجمالي المدخلات) في محطات التوليد المشترك للحرارة والكهرباء. وبلغ استهلاك الكهرباء داخل محطات التوليد وفي منظومات الطاقة الكهربية وفواقد نقل الطاقة 289,681 كيلوطن نفط مكافئ.

وكانت كمية الكهرباء التي تم توفيرها للمستهلك النهائي هي 1,445,285 كيلوطن نفط مكافئ (16,430 تيراواط ساعة) التي بلغت 33٪ من إجمالي الطاقة المستهلكة في محطات توليد الطاقة ومحطات التوليد المشترك للحرارة والكهرباء

الحصيلة التاريخية لإنتاج الكهرباء في العالم

لقد كانت الولايات المتحدة منذ فترة طويلة أكبر منتج ومستهلك للكهرباء، حيث تبلغ حصتها العالمية 25٪ على الأقل في عام 2005، تليها الصين، اليابان، روسيا، والهند.

اعتباراً من يناير 2010، كان إجمالي توليد الكهرباء لأكبر دولتين مولدتين على النحو التالي، الولايات المتحدة الأمريكية: 3992,000,000,000 كيلووات في الساعة (3992 تيراوات في الساعة) والصين: 3715,000,000,000 كيلووات في الساعة (3715 تيراوات في الساعة).
قائمة البلدان ومصادر الكهرباء لعام 2008

مصدر البيانات لتقديرات (الطاقة الكهربائية المولدة) هو وكالة الطاقة الدولية/منظمة التعاون والتنمية.[14]

البلدان المذكورة في الجدول هي أعلى 20 بلد من حيث عدد السكان أو أعلى 20 بلد على أساس الناتج المحلي الإجمالي (تعادل القوة الشرائية) والمملكة العربية السعودية على أساس كتاب حقائق العالم الصادر من قبل المخابرات المركزية الأمريكية لعام 2009.[15]
مكونات الطاقة الكهربية حسب الموارد (تيراواط ساعة سنوياً 2008) البلد الوقود الأحفوري نووي المرتبة الطاقة متجددة حيوي
أخرى* المجموع المرتبة
فحم نفط غاز حاصل
الجمع المرتبة مائية أرضية
حرارية شمسية
خ.ك* شمسية
حرارية رياح مد و جزر حاصل
الجمع المرتبة
مجموع العالم 8,263 1,111 4,301 13,675 – 2,731 – 3,288 65 12 0.9 219 0.5 3,584 – 271 20,261 –
النسبة 41% 5.5% 21% 67% – 13% – 16% 0.3% 0.06% 0.004% 1.1% 0.003% 18% – 1.3% 100% –
الولايات المتحدة 2,133 58 911 3,101 1 838 1 282 17 1.6 0.88 56 – 357 4 73 4,369 1
الصين 2,733 23 31 2,788 2 68 8 585 – 0.2 – 13 – 598 1 2.4 3,457 2
اليابان 288 139 283 711 3 258 3 83 2.8 2.3 – 2.6 – 91 7 22 1,082 3
روسيا 197 16 495 708 4 163 4 167 0.5 – – 0.01 – 167 5 2.5 1,040 4
الهند 569 34 82 685 5 15 6 114 – 0.02 – 14 – 128.02 6 2.0 830 5
كندا 112 9.8 41 162 17 94 7 383 – 0.03 – 3.8 0.03 386 2 8.5 651 6
ألمانيا 291 9.2 88 388 6 148 5 27 0.02 4.4 – 41 – 72 9 29 637 7
فرنسا 27 5.8 22 55 24 439 2 68 – 0.04 – 5.7 0.51 75 8 5.9 575 8
البرازيل 13 18 29 59 23 14 13 370 – – – 0.6 – 370 3 20 463 9
كوريا الجنوبية 192 15 81 288 8 151 5 5.6 – 0.3 – 0.4 – 6.3 24 0.7 446 10
المملكة المتحدة 127 6.1 177 310 7 52 10 9.3 – 0.02 – 7.1 – 16 18 11 389 11
إيطاليا 49 31 173 253 9 – – 47 5.5 0.2 – 4.9 – 58 11 8.6 319 12
إسبانيا 50 18 122 190 14 59 9 26 – 2.6 0.02 32 – 61 10 4.3 314 13
المكسيك 21 49 131 202 13 9.8 14 39 7.1 0.01 – 0.3 – 47 12 0.8 259 14
أستراليا 198 2.8 39 239 10 – – 12 – 0.2 0.004 3.9 – 16 19 2.2 257 15
تايوان 125 14 46 186 15 41 11 7.8 – 0.004 – 0.6 – 8.4 21 3.5 238 16
إيران 0.4 36 173 209 11 – – 5.0 – – – 0.20 – 5.2 26 – 215 17
المملكة العربية السعودية – 116 88 204 12 – – – – – – – – – – – 204 18
تركيا 58 7.5 99 164 16 – – 33 0.16 – – 0.85 – 34 13 0.22 198 19
اندونيسيا 61 43 25 130 19 – – 12 8.3 – – – – 20 17 – 149 20
تايلاند 32 1.7 102 135 18 – – 7.1 0.002 0.003 – – – 7.1 23 4.8 147 21
مصر – 26 90 115 20 – – 15 – – – 0.9 – 16 20 – 131 22
هولندا 27 2.1 63 92 21 4.2 15 0.1 – 0.04 – 4.3 – 4.4 27 6.8 108 23
باكستان 0.1 32 30 62 22 1.6 16 28 – – – – – 28 14 – 92 24
فيتنام 15 1.6 30 47 25 – – 26 – – – – – 26 15 – 73 25
الفلبين 16 4.9 20 40 26 – – 9.8 11 0.001 – 0.1 – 21 16 – 61 26
بنغلاديش 0.6 1.7 31 33 27 – – 1.5 – – – – – 1.5 29 – 35 27
نيجيريا – 3.1 12 15 28 – – 5.7 – – – – – 5.7 25 – 21 28
جمهورية الكونغو الديمقراطية – 0.02 0.03 0.05 30 – – 7.5 – – – – – 7.5 22 – 7.5 29
إثيوبيا – 0.5 – 0.5 29 – – 3.3 0.01 – – – – 3.3 28 – 3.8 30
البلد فحم نفط غاز حاصل
الجمع المرتبة نووي المرتبة مائية أرضية
حرارية شمسية
خ.ك شمسية
حرارية رياح مد و جزر حاصل
الجمع المرتبة حيوي
أخرى المجموع المرتبة

ربما تشاهد أيضأ:
مثال على العصف الذهني

شمسية خ.ك* هي الخلايا الكهروضوئية

حيوي أخرى* = 198 تيراواط ساعة (كتلة حيوية) + 69 تيراواط ساعة (نفايات) + 4 تيراواط ساعة (أخرى).

 

الخاتمه

 

نتمني ان نكون حققنا اكبر استفاده وجمعنا كل ما يهمكم حول هذا الموضوع وان ينال موقعنا لحظات علي اعجابكم.

التعليقات

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *